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Based on the basic equations of three-dimensional theory of elasticity, this paper
establishes the state-space equation of the axisymmetric vibration of laminated
annular plates composed of transversely isotropic layers. Taking advantage of the
finite Hankel transform, four exact solutions are obtained for four different types of
boundary conditions. The calculating methods of frequencies and mode shapes are
presented. Lastly, numerical results are given to validate the present method.
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1. INTRODUCTION

Numerous investigations on free axisymmetric vibration of annular plates are
available in the literature [ 1-10], but most of them are based on either the classical
plate theory or various shear theories or other approximate methods. Iyengar and
Raman [11] studied the free axisymmetric vibration of annular plates utilizing the
method of initial function that was approximate because of the necessitated
truncation of exact solutions in terms of infinite series. Ye [12] made
a three-dimensional investigation on the free axisymmetric vibration of annular
plates using the state-space-based method. In order to overcome the difficulty in
dealing with the algebraic manipulations of operators in the cylindrical
co-ordinates (r, 0, z), the following assumption, which was first introduced by Celep
[13] and then adopted by Fan and Ye [14], was used:

d _
ur=U g(r) ( ) 1()[ w=W f()W( ) 1wr
o d
0.=2=fWZ@e" =R ="Repen (1

where u, and w are displacement components in the radial and axial directions
respectively, o, is the axial normal stress, 7, is the shear stress, U, W, Z, R and f(r)
are unknown functions, w is the circular frequency, and f{(r) satisfies the following
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differential equation:
d?fir) | 1dftr)

dr? + ; ? + Kf(?‘) = O’ (2)

where K = + k? (k is an arbitrary constant). However, it can be found that
assumption (1) imposes excessive restriction on the state variables, and thus causes
confusion in the theory. For instance, according to equations (1) and (2) and the
stress-displacement relations [see equation (5) in our paper], the following three
types of boundary conditions,

clamped: U=W =0 atr=a, (3a)
simply supported: W =0, o,=0 atr=a, (3b)
free:0,=1,,=0 atr=a (3¢)

result in f(r) =0 and df(r)/dr =0 at r = a. Ye [12] substituted the solution of
equation (2), ie., f(r)= A Jokr) + A5Yy(kr) + Aslo(kr) + ALK o(kr), into the
three-dimensional axisymmetric state-space equations, and derived a set of
differential equations with constant coefficients. However, when J (kr) [or Y o(kr)]
and I (kr) [or K(kr)] satisfy equation (2), one will obtain K = k? and K = — k?
respectively. Subsequently, the substitution of J(kr) [or Y(kr)] and Iy (kr) [or
Ko(kr)] into the governing equations will give distinct coefficient matrices. Hence,
the application of f(r) in the foregoing form cannot give a set of differential
equations with constant coeflicients.

From the mentioned investigations, it is shown that there are inherent difficulties
in applying the state-space-based method to dynamic problems of elastic bodies in
cylindrical co-ordinates. In fact, three-dimensional exact solutions of free vibration
of isotropic annular plates have not yet been found. This paper applies the finite
Hankel transform to the axisymmetric state-space equations of an annular plate,
and renders the free terms of the transformed equations in terms of a linear
combination of boundary unknowns. Then exact solutions for four different types
of boundary conditions are derived in the paper. Numerical results are presented
and compared with those of finite element method (FEM) and good agreement is
found.

2. STATE-SPACE EQUATION AND SOLUTIONS

Consider a p-ply annular laminate of thickness h, outer radius a and inner radius
b, with h; denoting the thickness of the jth layer. The origin of the cylindrical
co-ordinates (r, 0, z) is located at the center of the top surface of the annular
laminate. The elastic symmetric axis of every lamina coincides with the z-axis,
which points to the bottom from the top. Based on three-dimensional theory of



LAMINATED ANNULAR PLATES 1033

elasticity, the axisymmetric equations of motion for each layer is given by

do,  Or. o,—a,  0%u,
ar oz P

4
0t,, 00, 1T, 0*w

ar Tz Ty P

where o, and o, are the radial and circumferential normal stress components
respectively and p denotes the material density. The stress-displacement relations of
the transversely isotropic elastic body can be written as

o, C11 €12 ¢13 O ou,/or

g _ 12 €11 ¢z 0 u, /1 5)
o, ci3 ¢c13 c33 0 ow/0z ’

Tps 0 0 0 cya ow/or + ou,/0z

where ¢y, C12, €13, €33 and c44 are elastic constants.
For the jth layer, choosing u,, 7., 7,. and w as the state variables, one can derive
the following dimensionless state-space formulation:

OR; (¢, _
kR G0 Ostsdis<is, ©
where
R, =T[4, &. 7. W], (7)
i, =u/h, Ww=w/h, G.=0/c], T.=r1./c}, (8)
¢=rfa, {=zj/h, d;j=hj/h, s=bla, 9)
K __0 Klj K _ Cs —t@/@f
7Ky 0 Vol -+ 1y —p@2 |
(10)
K. — [ — PQ* — cxt?(0%/08% + 1/£0/08 —1/&%)  ¢410/0¢
0 c11(0/0¢ + 1/%) s |
to=hla, p=p/p, Q% = pPw*h*/c), ¢c; = — ci3/ca,
11
cy = (C11C33 — 0%3)/(033C(111)), Cq = C(111)/C333 Cs = C(111)/C44 1
and z; =z — (hy + hy + -+ + h;_,) is the local z direction co-ordinate, and c{Y

and p'" denote the material constants of the first layer. In addition, the rest stress
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components are determined by

0, = Cato O,/ 0 + c3toll,/E — 10,

12
5o = Cato 00,108 + eatofl, /& — 15, 12
where
o, = Ur/C(lll), Gy = 0'0/0(111): c3 =(C12033 — 0%3)/(033 0(111))- (13)
The finite Hankel transform is defined by
1
H,[f]= J ¢f(OH, (k&) d¢, (14)

where H, (k&) = AJ, (k&) + BY, (k&), J, (k&) and Y, (k&) are Bessel functions of the
first and second kinds respectively, and A and B are arbitrary constants to be
determined later. The corresponding forms of the finite Hankel transform of the
state variables are defined as

U(kaC) = H, [ar:la W(k: g) = HO [W]: G(ka C) = HO [6-215 T(k> C) = H, [%rz]- (15)

Applying the transform presented above to equation (6) yields

aa_lzf' — KR, +Qy; + Q. (16)
where
Ri=[U ¢ —1t W], (17)
|0 M | —es kto |
o) e
(18)
- 02 2.2
N [pQ cjk‘;z" & C;’ﬂ — [N (mon=1,2)
—tow (1, OHq (k)
Q _ - tO%rz(la C) HO (k) (19)
Y Hea — ea) 31, (1,0) + toG, (1, O Hy (k) — cxt3kat, (1, ) Ho (k)
cytoth, (1, O Ho(k)
—tosw(s, O)Hy (ks)
Qsj _ - [OS%rz(s: C) HO (kS) (20)

[(c2 — c3)tdin (s, §) + stod, (s, OV H (ks) — cyt§skii, (s, ) Ho (ks) |
citosi, (s, )Ho(ks)
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The first formula in equation (12) has been used in the process of deriving equations
(19) and (20). It is apparent that one can obtain Q,; = {0} and Q,; = {0} for the
following four types of boundary conditions at the outer and the inner circular
edges, i.e.,, at r = a and r = b.

(1) Elastic simple support at the outer and the inner circular edges:
w(l, ) =w(s, () =0, (c;—c3)toit,(1,0)+a,.(1,{) =0.
(ca — c3)tot(s, ) + 5G,(s, {) =0, and Hy(k) = Ho(ks) = 0.
(2) Rigid slipping support at the outer and the inner circular edges:
. (L)=u.(50=0, 7.(1,)=7.(0)=0 and H, (k)= H,(ks)=0.

(3) Elastic simple support at the outer circular edge and rigid slipping support at
the inner circular edge:

\/T)(l, C) =0, (CZ - C3) toﬁr(la C) + 6-r(1a C) =0,
0(s,0) =0, %.(s0)=0 and Ho(k) = H,(ks)=O.

(4) Elastic simple support at the inner circular edge and rigid slipping support at
the outer circular edge:

W(Sn C) = 0’ (CZ - C3) toﬁr (S’ C) + Sa—r (S7 C) = 07
0,1,0=0, %.(1,0)=0 and Hy(ks) = H,(k) = 0.

Under the foregoing four types of boundary conditions, equation (16) becomes
homogeneous and its solution is

R;(0) = T;(OR;(0) (21)
where T;({) = e®*. Using Cayley-Hamilton’s theorem [15], one has

oo (0T + o2 () M;N; a1 (OM; + a3 (C)MijMj:|

0=, N ONAN, N =

When the eigenvalues of the matrix K; are distinct, o; ({) (i = 0, 1,2, 3) in equation
(22) are determined by

71 v
%o 1 )\41 /1% /l% e)"g
oy 1 -4 A3 =4 e ¢
_ — Y (23)
05} 1 }uz /12 A e’
o3 1 — ;uz /1% — /1% € — At

where + A; and =+ 4, are the eigenvalues of the matrix K;, which can be written as
. _/Bo+2 /Co;\/30—2 /CO’ i _/Bo+2 /co;\/B0 ) /CO,

(24)
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in which By and C, are determined by

Bo=M;1Ni1 + M3;Nz2 +2M 13N, Co =M1 My — M%z)(Nusz - N%z)-
(25)

The case of multiple eigenvalues of the matrix K; generally does not occur in
dynamic problems. If such a case appears,i.e. .y = 1, = 4, %; (i =0, 1,2, 3) are given
by

o 1 2 /12 )»3 -1 eic
o1 0 1 22 32 Le*
= o, N P (26)
o 1 -2 A — A e
o3 0 1 —21 37 le %

From equation (21), the continuity conditions of u,, 7., 7., and w at each interface
yield

R,(d,) = TR, (0), 27
where
1
T=[Tu]l= H Tj (dj) (28)

For the free vibration problem, the boundary conditions, at the top and bottom
surfaces of an annular laminate can be written as

a(d,) = 1(d,) = 0(0) = 1(0) = 0. (29)
Substituting equation (29) into equation (27) yields

T21 T24 U(k7 0) _ 0 (30)
Tsi Tsa Wk 0f  |0f°
Setting the coefficient determinant of the homogeneous equation (30) to zero for
non-trivial solutions gives rise to the characteristic frequency equation. The

frequency equation is transcendental and gives an infinite number of frequencies for
each k.

3. CALCULATING FREQUENCIES AND MODE SHAPES

Since Hy(k) = H (ks) = 0 for boundary conditions (1), the parameter k should
satisfy

Jo(k) Yo(ks) — Jo (ks)Yo(k) = 0, (31)
and constants 4 and B can thus be taken as

A=Yo(ks), B=— T (ks). (32)



LAMINATED ANNULAR PLATES 1037

Then a series of positive roots k; (i = 1,2, ...,) of equation (31) can be obtained. The
substitution of each root k; into equation (18) gives the corresponding expression of
the matrix K, utilizing which, T is evaluated from equation (22) and the matrix T is
obtained from equation (28). Thus, the dimensionless frequency 2 becomes unique-
ly unknown in the frequency equation. To seek the root of the frequency equation,
Q2 is stepped through a sequence of small increments from an initial value. When
the sign of the value of the coefficient determinant of equation (30) is alternated, the
interval that contains a root can be determined. The frequency can then be
obtained by the bisection method with required precision. Once the dimensionless
frequency  is obtained, substituting it into equation (30) results in the ratios
between U (k;, 0) and W (k;, 0). Consequently, U (k;, {) and W (k;, {) are obtained
from equation (21). By virtue of the inverse Hankel transform formulae given by
Cinelli [16], the corresponding mode shapes are obtained:

7 kRT3 (k) U ki, 0

TS Bl k)

L)1 (ki) Yo (kis) — Yi(ki€) Jo (ki 5)], (33)

12 k23 (k)W (k;, ©)
2 T2(kis) — J3(ky)

For boundary conditions (2), the equation, which k satisfies, becomes

w(E )=

o (ki) Yo (kis) — Yo(ki&) Jo (ki 5)]. (34)

J1(k)Y1(ks) — J1(ks)Yi(k) =0 (35)
and constants 4 and B are
A=Y, (ks), B= —1T;(ks) (36)

The procedure of searching the frequency is the same as for boundary conditions (1)
whereas the corresponding mode shapes are

n? kI3 (k) U (kuC)

(& 0) = 2 T(ks) — 13 (k)

1 (ki) Y1 (kis) — Y (ki&) Iy (ki s)], (37)
7 K23 (k)W (ki 0)
2 J%(kis) - J%(ki)

For boundary conditions (3), the equation about k, and the corresponding mode
shapes are

w(g )=

[Jo(ki&) Y1 (kis) — Yo (ki &) Ty (k; s)]. (38)

Jo(k) Yy (ks) — T, (ks) Yo(k) = 0 (39)
and
2 k2J2(k; k;
i 6 0= SO [ Y, o) — YD, Ko, (40
2 1272(1. .
(e = MIEWED 1y oy (k) — Yok T 9] @D)

2 Ji(kis) — (k)

respectively. Constants 4 and B are the same as those for boundary conditions (2).
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Figure 1. The mesh schemes of FEM.

TABLE 1

The first three dimensionless frequencies for boundary conditions (3)

to The present method FEM

01 0-0293 0-1843 0-2896 0-0293 0-1846  0-2897

02 0-1094 0-5595 0-5752 0-1094 0-5599  0-5752

03 0-2242 0-8517 0-9747 0-2242 0-8518 09753

0-4 0-3595 1-1128 1-3931 0-3596 1-1128  1-3940

0-5 0-5061 1-3494 1-8079 0-5061 13494 1-8093
TABLE 2

Dimensionless frequencies for boundary conditions (1)

to k = 6-24606 k =12-5469 k = 18-8364

0-1 00846 0-5018 14483 0-2896 09839 16969  0-5438 1-4035 2-0130
02 02875 09799 16943 0-8172 1-7125 2-3475 | 1-3608 20765 2:9731
03 0539 13976  2:0078 13594  2:0757 29719 | 2:1709 2-5860 3:6525
0-4 08079 17081 2-3416 1-9008 2-4009 3-4530 | 29669 3-2098 4-2066
05 10802 19130 26671 2-4352 27817 3-8370 | 3-7534 3-8999 47952

For boundary conditions (4), the equation about k, constants 4 and B, and the
corresponding mode shapes are

J1(k)Yo(ks) — Jo(ks) Y1 (k) =0, (42)

A=Yi(k), B= —1Ji(k) (43)
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and
n? k)3 (kis)U (k;, €)
L_lr 5 = — : o J ki Y ki - Y ki J ki 5 44
€ 0= s =y Dk k) = ik k)], (44)
7> k2T (ki)W (ks 0)
&= 5 3 [Jo (ki) Yi (ki) — Yo(ki)J1 (ki )] (45)
2 Jo(kis) — Ji(ky)
respectively.
TABLE 3
Dimensionless frequencies for boundary conditions (2)
to k = 6:39316 k =12-6247 k = 18-8889
0-1 00883 0-5134 14528 02925 09895 1-7005 @ 0-5459 1-4065 2-0157
02 02986 1-0013 1-7080 0-8194 17186 2:3557 | 1-:3653 2:0790 29777
03 05582 14235 20310 1-3695 2-0814 29820 2-1775 2-5907 3-6572
04 08335 17311  2:3729 19141 24096 3-4632 29757 3-2172 4-2128
05 11123 19329 27039 2:4517 27943 3-8483 | 3-7642 39098 4-8037
TABLE 4
Dimensionless frequencies for boundary conditions (3)
to k = 3-58802 k =9-60412 k =158179
0-1 00293 02896 1:3827 0-1843 07637 1-5682 | 04185 1-2131 1-8566
02 01094 05752 14779 0-5595 14252 20326 1-0981 19241 2-6877
03 02242 08517 1-6168 09747 1-8427 2:5436  1-7837 2-:3257 3-3600
04 03595 11128 1-7833 1-3931 2:0947 3-0059 &= 2-4583 2:7994 3-8528
0-5 05061 1-3494 19658 1-8079 2:3410 3-3795 | 3-1242 3-3434 4-3195
TABLE 5
Dimensionless frequencies for boundary conditions (4)
to k = 272155 k =9-29180 k = 15-62830
01 00170 02199 1-3683 01739 07398 1-:5557 04107 12003 1-8469
02 00653 04381 14254 0-5331 1-3884 19996 = 1-0814 19137 2:6685
03 01383 06526 1-5126 09338 1-8128 24947 1-7590 2-:3102 3-3397
04 02286 08610 1-6221 1-3389  2:0642 2-9505 | 2-4259 27745 3-8305
05 03303 10603 1-7471 1-7407 2:2989 3-3245 | 3-0841 3-3091 4-2905
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4. NUMERICAL EXAMPLES

To illustrate the validity of the present method, a comparison with the results
obtained by the finite element method (FEM) is made. The FEM program is
programmed in Fortran90 and compiled by Microsoft Fortran Powerstation 4.0,
and the 8-node isoparametric elements are used. The eigenvalues are evaluated by
the sub-space iterative method. When the thickness-to-outer radius ratio t, < 0-2,
amesh of 10 x 5 is adopted while a mesh of 8 x 8 is used when t, > 0-2, as shown in
Figure 1(a) and 1(b) respectively.

L T T T T T e e g e g )
) 1 1 1 i 1 ] 1
1 1 | 1 1 ] ]

o i o e ¥ +
‘ \

(a)
e TN
e - ~
i Y | !
PR
(b)
; e o e s vk i 1:']
L ' ! 1
e S
© . L_ .t 1 L _ ] IL (i
G
A e “f'\‘
P> N B}
A T A I
/ /: \\L‘:_\_':""" _|
/II I____\L H——"’ ]
(d ]

Figure 2. The mode shapes corresponding to the first four frequencies for boundary conditions (1).
(a) k=624606, Q= 02875 to=02; (b) k=125469, Q =08172, to=02; (c) k= 6246006,
Q =09799, to = 0-2; (d) k = 18:8364, 2 = 1-3608, t, = 0-2; (- - - - initial mesh, mode shapes).
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Example 1. Consider a transversely isotropic annular plate with elastic constants
c11 = 139x10'° Pa, ¢y, = 778 x 10'° Pa, ¢;3 = 743 x 10'° Pa, ¢33 = 11-5x 10'°
Pa, c4q = 2:56 x 10'° Pa, and the inner radius-to-outer radius ratio s = 0-5. Table
1 lists the first three dimensionless frequencies obtained both by the present method
and FEM for boundary conditions (3) for several different values of the
thickness-to-outer radius ratios t,. The results show a good agreement. Tables 2-5
list the first three dimensionless frequencies corresponding to the first three values
of k for four types of boundary conditions, respectively. The mode shapes
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fo—eod ¥ 1
1 3 1
-t P VR § DR | A
i 1 1 t I
1 1 i ]
N N [} o IR TN et
()
®)
= (o -rf—— I S e ot aduind s fefiint it Subenianin |
] | I 1 1 ] T +
T I ] 1 ] [}
F-—4~r F—=H=r 2 L +
I I ] ] 1 ] T T
] t 3 [} II i _L AL
I—— ] [l | 1 i ] ] i
1 ] t 1 1 ] L] 1
- L . A
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i ! t [}
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Figure 3. The mode shapes corresponding to the first four frequencies for boundary conditions (2).
(a) k=639316, Q=02986, to =02; (b) k=126247, Q =08194, t, =02; (c) k= 639316,
Q =1-0013, to = 0-2; (d) k = 18-:8889, 2 = 1-3653, ty = 0-2; (- - - - initial mesh, mode shapes).
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correspond to the first four frequencies are displayed in Figures 2-5 for four types
of boundary conditions respectively, for the annular plate with ¢, = 0-2.

Example 2. This example computes the lowest dimensionless frequencies of
a sandwich annular plate with s = 0-5 for all four types of boundary conditions. The
results are listed in Table 6. The first and third layers are made of isotropic material
of Young’s modulus E = 2-1x 10'! Pa and the Poisson ratio pu = 0-3, and the
second one is made of transversely isotropic material with the same elastic
constants as in Example 1. The thicknesses of the three laminae are hy = hy; = h/4
and h, = h/2 respectively, and the densities are p; = p3 = 7-8 x 10 kg/m* and
p> = 7-5x 10° kg/m? respectively.

| K] e r T | P =
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I I A L N N O N
1
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Figure 4. The mode shapes corresponding to the first four frequencies for boundary conditions (3).
(a) k=358802, Q=01094, to=02; (b) k=960412, Q= 05595, to=02; (c) k= 358802,
Q =05752, to = 0-2; (d) k = 158179, 2 = 1-0981, t, = 0-2; (- - - - initial mesh, mode shapes).
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Figure 5. The mode shapes corresponding to the first four frequencies for boundary conditions (4).
(a) k=272155 Q=0-0653, to =02; (b) k=272155 € =04381, to =02; (c) k=9-291780,
Q =05331, to = 0-2; (d) k = 1562830, Q2 = 1-0814, ty = 0-2; (- - - - initial mesh, mode shapes).

TABLE 6

The lowest dimensionless frequencies of a sandwich annular laminate for four types of

boundary conditions

to Boundary Boundary Boundary Boundary

conditions (1) conditions (2) conditions (3) conditions (4)
0-1 0-0873 0-0910 0-0312 0-0183
02 0-2747 0-2845 0-1115 0-0681
03 0-4896 0-5052 0-2184 0-1391
0-4 0-7130 0-7344 0-3373 0-2223
0-5 09424 0-9700 0-4616 0-3121
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5. CONCLUSIONS

A state-space-based method associated with the finite Hankel transform has been

developed in this paper to study the free axisymmetric vibration of a laminated
transversely isotropic annular plate. The exact solution can be found only for four types
of boundary conditions. Numerical examples are presented and good agreement is
observed when the results are compared with those of FEM. This method can be
extended to investigate the bending and forced vibration of annular plates.
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