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Based on the basic equations of three-dimensional theory of elasticity, this paper
establishes the state-space equation of the axisymmetric vibration of laminated
annular plates composed of transversely isotropic layers. Taking advantage of the
"nite Hankel transform, four exact solutions are obtained for four di!erent types of
boundary conditions. The calculating methods of frequencies and mode shapes are
presented. Lastly, numerical results are given to validate the present method.

( 2000 Academic Press
1. INTRODUCTION

Numerous investigations on free axisymmetric vibration of annular plates are
available in the literature [1}10], but most of them are based on either the classical
plate theory or various shear theories or other approximate methods. Iyengar and
Raman [11] studied the free axisymmetric vibration of annular plates utilizing the
method of initial function that was approximate because of the necessitated
truncation of exact solutions in terms of in"nite series. Ye [12] made
a three-dimensional investigation on the free axisymmetric vibration of annular
plates using the state-space-based method. In order to overcome the di$culty in
dealing with the algebraic manipulations of operators in the cylindrical
co-ordinates (r, h, z), the following assumption, which was "rst introduced by Celep
[13] and then adopted by Fan and Ye [14], was used:

u
r
";"

df (r)
dr
;M (z) eiut, w"="f (r)=M (z) eiut,

p
z
"Z"f (r) ZM (z) eiut, q

rz
"R"

df(r)
dr

RM (z) eiut, (1)

where u
r

and w are displacement components in the radial and axial directions
respectively, p

z
is the axial normal stress, q

rz
is the shear stress, ;M ,=M , ZM , RM and f (r)

are unknown functions, u is the circular frequency, and f(r) satis"es the following
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di!erential equation:

d2 f(r)
dr2

#

1
r

df(r)
dr

#Kf (r)"0, (2)

where K"$k2 (k is an arbitrary constant). However, it can be found that
assumption (1) imposes excessive restriction on the state variables, and thus causes
confusion in the theory. For instance, according to equations (1) and (2) and the
stress-displacement relations [see equation (5) in our paper], the following three
types of boundary conditions,

clamped: ;"="0 at r"a, (3a)

simply supported:="0, p
r
"0 at r"a, (3b)

free: p
r
"q

rz
"0 at r"a (3c)

result in f (r)"0 and df (r)/dr"0 at r"a. Ye [12] substituted the solution of
equation (2), i.e., f(r)"A

1
J
0
(kr)#A

2
>
0
(kr)#A

3
I
0
(kr)#A

4
K

0
(kr), into the

three-dimensional axisymmetric state-space equations, and derived a set of
di!erential equations with constant coe$cients. However, when J

0
(kr) [or >

0
(kr)]

and I
0
(kr) [or K

0
(kr)] satisfy equation (2), one will obtain K"k2 and K"!k2

respectively. Subsequently, the substitution of J
0
(kr) [or >

0
(kr)] and I

0
(kr) [or

K
0
(kr)] into the governing equations will give distinct coe$cient matrices. Hence,

the application of f(r) in the foregoing form cannot give a set of di!erential
equations with constant coe$cients.

From the mentioned investigations, it is shown that there are inherent di$culties
in applying the state-space-based method to dynamic problems of elastic bodies in
cylindrical co-ordinates. In fact, three-dimensional exact solutions of free vibration
of isotropic annular plates have not yet been found. This paper applies the "nite
Hankel transform to the axisymmetric state-space equations of an annular plate,
and renders the free terms of the transformed equations in terms of a linear
combination of boundary unknowns. Then exact solutions for four di!erent types
of boundary conditions are derived in the paper. Numerical results are presented
and compared with those of "nite element method (FEM) and good agreement is
found.

2. STATE-SPACE EQUATION AND SOLUTIONS

Consider a p-ply annular laminate of thickness h, outer radius a and inner radius
b, with h

j
denoting the thickness of the jth layer. The origin of the cylindrical

co-ordinates (r, h, z) is located at the center of the top surface of the annular
laminate. The elastic symmetric axis of every lamina coincides with the z-axis,
which points to the bottom from the top. Based on three-dimensional theory of
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elasticity, the axisymmetric equations of motion for each layer is given by

Lp
r

Lr
#

Lr
rz

Lz
#

p
r
!ph
r

"o
L2u

r
Lt2

,

(4)
Lq

rz
Lr

#

Lp
z

Lz
#

q
rz
r
"o

L2w
Lt2

,

where p
r

and ph are the radial and circumferential normal stress components
respectively and o denotes the material density. The stress-displacement relations of
the transversely isotropic elastic body can be written as

G
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r

ph
p
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q
rz
H"C

c
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c
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c
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0

c
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c
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c
13

0

c
13

c
13

c
33

0

0 0 0 c
44
D G

Lu
r
/Lr

u
r
/r

Lw/Lz

Lw/Lr#Lu
r
/LzH , (5)

where c
11

, c
12

, c
13

, c
33

and c
44

are elastic constants.
For the jth layer, choosing u

r
, p

z
, q

rz
and w as the state variables, one can derive

the following dimensionless state-space formulation:

LR1
j
(m, f)
Lf

"K1
j
R1

j
(m, f) (0)f)d

j
, s)m)1), (6)

where

R1
j
"[uN

r
pN
z

qN
rz

wN ]T, (7)

uN
r
"u

r
/h, wN "w/h, p6

z
"p

z
/c(1)

11
, qN

rz
"q

rz
/c(1)

11
, (8)

m"r/a, f"z
j
/h, d

j
"h

j
/h, s"b/a, (9)

K1
j
"C

0
K1

2j

K1
1j
0 D , K1

1j
"C

c
5

!t(L/Lm#1/m)
!tL/Lm
!o6 X2 D ,

(10)

K1
2j
"C

!o6 X2!c
2
t2 (L2/Lm2#1/m L/Lm!1/m2)
c
1
t (L/Lm#1/m)

c
1
tL/Lm
c
4
D ,

t
0
"h/a, oN "o/o(1),X2"o(1)u2h2/c(1)

11
, c

1
"!c

13
/c

33
,

c
2
"(c

11
c
33
!c2

13
)/(c

33
c(1)
11

), c
4
"c(1)

11
/c

33
, c

5
"c(1)

11
/c

44

(11)

and z
j
"z!(h

1
#h

2
#2#h

j~1
) is the local z direction co-ordinate, and c(1)

11
and o(1) denote the material constants of the "rst layer. In addition, the rest stress
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components are determined by

p6
r
"c

2
t
0

LuN
r
/Lm#c

3
t
0
uN
r
/m!c

1
p6
z
,

p6 h"c
3
t
0
LuN

r
/Lm#c

2
t
0
uN
r
/m!c

1
p6
z
,

(12)

where

p6
r
"p

r
/c(1)

11
, p6 h"ph/c(1)11

, c
3
"(c

12
c
33
!c2

13
)/ (c

33
c(1)
11

). (13)

The "nite Hankel transform is de"ned by

Hk [ f ]"P
1

s

m f (m)Hk (km) dm, (14)

where Hk (km)"AJk (km)#BYk (km), Jk (km) and Yk (km) are Bessel functions of the
"rst and second kinds respectively, and A and B are arbitrary constants to be
determined later. The corresponding forms of the "nite Hankel transform of the
state variables are de"ned as

; (k,f)"H
1
[uN

r
], = (k, f)"H

0
[wN ], p (k, f)"H

0
[p6

z
], q(k, f)"H

1
[q6

rz
]. (15)

Applying the transform presented above to equation (6) yields

LR
j

Lf
"K

j
R

j
#Q

1j
#Q

sj
, (16)

where

R
j
"[; p !q =]T, (17)
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(k)

!t
0
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(1, f) H
0
(k)
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3
) t2

0
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(1, f)]H
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(k)!c

2
t2
0
kuN

r
(1, f)H

0
(k)

c
1
t
0
uN
r
(1, f)H

0
(k) H , (19)
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(s, f)H

0
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1
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0
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The "rst formula in equation (12) has been used in the process of deriving equations
(19) and (20). It is apparent that one can obtain Q

1j
"M0N and Q

sj
"M0N for the

following four types of boundary conditions at the outer and the inner circular
edges, i.e., at r"a and r"b.

(1) Elastic simple support at the outer and the inner circular edges:

wN (1, f)"wN (s, f)"0, (c
2
!c

3
) t

0
uN
r
(1, f)#p6

r
(1, f)"0.

(c
2
!c

3
) t

0
uN
r
(s, f)#sp6

r
(s, f)"0, and H

0
(k)"H

0
(ks)"0.

(2) Rigid slipping support at the outer and the inner circular edges:

uN
r
(1, f)"uN

r
(s, f)"0, q6

rz
(1, f)"q6

rz
(s, f)"0 and H

1
(k)"H

1
(ks)"0.

(3) Elastic simple support at the outer circular edge and rigid slipping support at
the inner circular edge:

wN (1, f)"0, (c
2
!c

3
) t

0
uN
r
(1, f)#p6

r
(1, f)"0,

uN
r
(s, f)"0, q6

rz
(s, f)"0 and H

0
(k)"H

1
(ks)"0.

(4) Elastic simple support at the inner circular edge and rigid slipping support at
the outer circular edge:

wN (s, f)"0, (c
2
!c

3
) t

0
uN
r
(s, f)#sp6

r
(s, f)"0,

uN
r
(1, f)"0, q6

rz
(1, f)"0 and H

0
(ks)"H

1
(k)"0.

Under the foregoing four types of boundary conditions, equation (16) becomes
homogeneous and its solution is

R
j
(f)"T

j
(f)R

j
(0) (21)

where T
j
(f)"eK

j
f . Using Cayley}Hamilton's theorem [15], one has

T
j
(f)"C
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0
(f)I#a

2
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j
D (22)

When the eigenvalues of the matrix K
j
are distinct, a

i
(f) (i"0, 1, 2, 3) in equation

(22) are determined by
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where $j
1

and $j
2

are the eigenvalues of the matrix K
j
, which can be written as
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in which B
0

and C
0

are determined by
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"(M
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(25)

The case of multiple eigenvalues of the matrix K
j

generally does not occur in
dynamic problems. If such a case appears, i.e. j

1
"j

2
"j, a

i
(i"0, 1, 2, 3) are given

by

G
a
0

a
1

a
2

a
3
H"C

1 j j2 j3

0 1 2j 3j2

1 !j j2 !j3

0 1 !2j 3j2 D
~1

G
ejf

fejf

e!jf

fe!jf H , (26)

From equation (21), the continuity conditions of u
r
, p

z
, q

rz
and w at each interface

yield

R
p
(d

p
)"TR

1
(0), (27)

where

T"[¹
mn

]"
1
<
j/p

T
j
(d

j
) . (28)

For the free vibration problem, the boundary conditions, at the top and bottom
surfaces of an annular laminate can be written as

p (d
p
)"q(d

p
)"p(0)"q(0)"0. (29)

Substituting equation (29) into equation (27) yields

C
¹

21
¹

24
¹

31
¹

34
D G
; (k, 0)
= (k, 0)H"G

0
0H . (30)

Setting the coe$cient determinant of the homogeneous equation (30) to zero for
non-trivial solutions gives rise to the characteristic frequency equation. The
frequency equation is transcendental and gives an in"nite number of frequencies for
each k.

3. CALCULATING FREQUENCIES AND MODE SHAPES

Since H
0
(k)"H

0
(ks)"0 for boundary conditions (1), the parameter k should

satisfy

J
0
(k) Y

0
(ks)!J

0
(ks)Y

0
(k)"0, (31)

and constants A and B can thus be taken as

A"Y
0
(ks), B"!J

0
(ks). (32)
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Then a series of positive roots k
i
(i"1, 2,2,) of equation (31) can be obtained. The

substitution of each root k
i
into equation (18) gives the corresponding expression of

the matrix K
j
, utilizing which, T

j
is evaluated from equation (22) and the matrix T is

obtained from equation (28). Thus, the dimensionless frequency X becomes unique-
ly unknown in the frequency equation. To seek the root of the frequency equation,
X is stepped through a sequence of small increments from an initial value. When
the sign of the value of the coe$cient determinant of equation (30) is alternated, the
interval that contains a root can be determined. The frequency can then be
obtained by the bisection method with required precision. Once the dimensionless
frequency X is obtained, substituting it into equation (30) results in the ratios
between ; (k

i
, 0) and = (k

i
, 0). Consequently, ; (k

i
, f) and = (k

i
, f) are obtained

from equation (21). By virtue of the inverse Hankel transform formulae given by
Cinelli [16], the corresponding mode shapes are obtained:
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For boundary conditions (2), the equation, which k satis"es, becomes

J
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(ks)!J

1
(ks)Y

1
(k)"0 (35)

and constants A and B are

A"Y
1
(ks), B"!J

1
(ks). (36)

The procedure of searching the frequency is the same as for boundary conditions (1)
whereas the corresponding mode shapes are
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For boundary conditions (3), the equation about k, and the corresponding mode
shapes are
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respectively. Constants A and B are the same as those for boundary conditions (2).



Figure 1. The mesh schemes of FEM.

TABLE 1

¹he ,rst three dimensionless frequencies for boundary conditions (3)

t
0

The present method FEM

0)1 0)0293 0)1843 0)2896 0)0293 0)1846 0)2897
0)2 0)1094 0)5595 0)5752 0)1094 0)5599 0)5752
0)3 0)2242 0)8517 0)9747 0)2242 0)8518 0)9753
0)4 0)3595 1)1128 1)3931 0)3596 1)1128 1)3940
0)5 0)5061 1)3494 1)8079 0)5061 1)3494 1)8093

TABLE 2

Dimensionless frequencies for boundary conditions (1)

t
0

k"6)24606 k"12)5469 k"18)8364

0)1 0)0846 0)5018 1)4483 0)2896 0)9839 1)6969 0)5438 1)4035 2)0130
0)2 0)2875 0)9799 1)6943 0)8172 1)7125 2)3475 1)3608 2)0765 2)9731
0)3 0)5396 1)3976 2)0078 1)3594 2)0757 2)9719 2)1709 2)5860 3)6525
0)4 0)8079 1)7081 2)3416 1)9008 2)4009 3)4530 2)9669 3)2098 4)2066
0)5 1)0802 1)9130 2)6671 2)4352 2)7817 3)8370 3)7534 3)8999 4)7952

1038 H.-J. DING AND R.-Q. XU
For boundary conditions (4), the equation about k, constants A and B, and the
corresponding mode shapes are

J
1
(k)Y

0
(ks)!J

0
(ks)Y

1
(k)"0, (42)

A"Y
1
(k), B"!J

1
(k) (43)
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and
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wN (m, f)"
n2

2
k2
i
J2
0
(k

i
s)= (k
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i
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(k
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)] (45)

respectively.
TABLE 5

Dimensionless frequencies for boundary conditions (4)

t
0

k"2)72155 k"9)29180 k"15)62830

0)1 0)0170 0)2199 1)3683 0)1739 0)7398 1)5557 0)4107 1)2003 1)8469
0)2 0)0653 0)4381 1)4254 0)5331 1)3884 1)9996 1)0814 1)9137 2)6685
0)3 0)1383 0)6526 1)5126 0)9338 1)8128 2)4947 1)7590 2)3102 3)3397
0)4 0)2286 0)8610 1)6221 1)3389 2)0642 2)9505 2)4259 2)7745 3)8305
0)5 0)3303 1)0603 1)7471 1)7407 2)2989 3)3245 3)0841 3)3091 4)2905

TABLE 4

Dimensionless frequencies for boundary conditions (3)

t
0

k"3)58802 k"9)60412 k"15)8179

0)1 0)0293 0)2896 1)3827 0)1843 0)7637 1)5682 0)4185 1)2131 1)8566
0)2 0)1094 0)5752 1)4779 0)5595 1)4252 2)0326 1)0981 1)9241 2)6877
0)3 0)2242 0)8517 1)6168 0)9747 1)8427 2)5436 1)7837 2)3257 3)3600
0)4 0)3595 1)1128 1)7833 1)3931 2)0947 3)0059 2)4583 2)7994 3)8528
0)5 0)5061 1)3494 1)9658 1)8079 2)3410 3)3795 3)1242 3)3434 4)3195

TABLE 3

Dimensionless frequencies for boundary conditions (2)

t
0

k"6)39316 k"12)6247 k"18)8889

0)1 0)0883 0)5134 1)4528 0)2925 0)9895 1)7005 0)5459 1)4065 2)0157
0)2 0)2986 1)0013 1)7080 0)8194 1)7186 2)3557 1)3653 2)0790 2)9777
0)3 0)5582 1)4235 2)0310 1)3695 2)0814 2)9820 2)1775 2)5907 3)6572
0)4 0)8335 1)7311 2)3729 1)9141 2)4096 3)4632 2)9757 3)2172 4)2128
0)5 1)1123 1)9329 2)7039 2)4517 2)7943 3)8483 3)7642 3)9098 4)8037
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4. NUMERICAL EXAMPLES

To illustrate the validity of the present method, a comparison with the results
obtained by the "nite element method (FEM) is made. The FEM program is
programmed in Fortran90 and compiled by Microsoft Fortran Powerstation 4.0,
and the 8-node isoparametric elements are used. The eigenvalues are evaluated by
the sub-space iterative method. When the thickness-to-outer radius ratio t

0
)0)2,

a mesh of 10]5 is adopted while a mesh of 8]8 is used when t
0
'0)2, as shown in

Figure 1(a) and 1(b) respectively.
Figure 2. The mode shapes corresponding to the "rst four frequencies for boundary conditions (1).
(a) k"6)24606, X"0)2875, t

0
"0)2; (b) k"12)5469, X"0)8172, t

0
"0)2; (c) k"6)24606,

X"0)9799, t
0
"0)2; (d) k"18)8364, X"1)3608, t

0
"0)2; (- - - - initial mesh, ** mode shapes).
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Example 1. Consider a transversely isotropic annular plate with elastic constants
c
11
"13)9]1010 Pa, c

12
"7)78]1010 Pa, c

13
"7)43]1010 Pa, c

33
"11)5]1010

Pa, c
44
"2)56]1010 Pa, and the inner radius-to-outer radius ratio s"0)5. Table

1 lists the "rst three dimensionless frequencies obtained both by the present method
and FEM for boundary conditions (3) for several di!erent values of the
thickness-to-outer radius ratios t

0
. The results show a good agreement. Tables 2}5

list the "rst three dimensionless frequencies corresponding to the "rst three values
of k for four types of boundary conditions, respectively. The mode shapes
Figure 3. The mode shapes corresponding to the "rst four frequencies for boundary conditions (2).
(a) k"6)39316, X"0)2986, t

0
"0)2; (b) k"12)6247, X"0)8194, t

0
"0)2; (c) k"6)39316,

X"1)0013, t
0
"0)2; (d) k"18)8889, X"1)3653, t

0
"0)2; (- - - - initial mesh, ** mode shapes).
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correspond to the "rst four frequencies are displayed in Figures 2}5 for four types
of boundary conditions respectively, for the annular plate with t

0
"0)2.

Example 2. This example computes the lowest dimensionless frequencies of
a sandwich annular plate with s"0)5 for all four types of boundary conditions. The
results are listed in Table 6. The "rst and third layers are made of isotropic material
of Young's modulus E"2)1]1011 Pa and the Poisson ratio k"0)3, and the
second one is made of transversely isotropic material with the same elastic
constants as in Example 1. The thicknesses of the three laminae are h

1
"h

3
"h/4

and h
2
"h/2 respectively, and the densities are o

1
"o

3
"7)8]103 kg/m3 and

o
2
"7)5]103 kg/m3 respectively.
Figure 4. The mode shapes corresponding to the "rst four frequencies for boundary conditions (3).
(a) k"3)58802, X"0)1094, t

0
"0)2; (b) k"9)60412, X"0)5595, t

0
"0)2; (c) k"3)58802,

X"0)5752, t
0
"0)2; (d) k"15)8179, X"1)0981, t

0
"0)2; (- - - - initial mesh, ** mode shapes).



Figure 5. The mode shapes corresponding to the "rst four frequencies for boundary conditions (4).
(a) k"2)72155, X"0)0653, t

0
"0)2; (b) k"2)72155, X"0)4381, t

0
"0)2; (c) k"9)291780,

X"0)5331, t
0
"0)2; (d) k"15)62830, X"1)0814, t

0
"0)2; (- - - - initial mesh, ** mode shapes).

TABLE 6

¹he lowest dimensionless frequencies of a sandwich annular laminate for four types of
boundary conditions

t
0

Boundary Boundary Boundary Boundary
conditions (1) conditions (2) conditions (3) conditions (4)

0)1 0)0873 0)0910 0)0312 0)0183
0)2 0)2747 0)2845 0)1115 0)0681
0)3 0)4896 0)5052 0)2184 0)1391
0)4 0)7130 0)7344 0)3373 0)2223
0)5 0)9424 0)9700 0)4616 0)3121

LAMINATED ANNULAR PLATES 1043
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5. CONCLUSIONS

A state-space-based method associated with the "nite Hankel transform has been
developed in this paper to study the free axisymmetric vibration of a laminated
transversely isotropic annular plate. The exact solution can be found only for four types
of boundary conditions. Numerical examples are presented and good agreement is
observed when the results are compared with those of FEM. This method can be
extended to investigate the bending and forced vibration of annular plates.
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